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Abstract
We study the phase transition between survival and extinction in an epidemic
process with long-range interactions and immunization. This model can be
viewed as the well-known general epidemic process in which nearest-neighbor
interactions are replaced by Levy flights over distances r which are distributed
as P(r) ∼ r−d−σ . By extensive numerical simulations, we confirm previous
field-theoretical results obtained by Janssen et al (1999 Eur. Phys. J. B 7 137).

PACS numbers: 68.35.Rh, 05.40.Fb, 64.60.ah

1. Introduction

In statistical physics, models for epidemic spreading continue to attract attention because they
exhibit non-equilibrium phase transitions with universal properties. The best-known example
is the universality class of directed percolation (DP) [1–4], which is observed in lattice
models for epidemic spreading with nearest-neighbor infection and spontaneous recovery.
Very recently, this type of phase transition was observed experimentally for the first time by
Takeuchi et al [5].

In the past two decades, various generalized models of epidemic spreading have been
proposed. One possible generalization is to introduce a local memory in order to mimic the
effect of immunization [6]. This leads to the the so-called general epidemic process (GEP),
which has been studied both numerically and by field-theoretic methods [7–9]. Another
possibility is to consider long-range infections which are usually modeled by so-called Levy
flights (for a recent review, see [10]). In such models the infection is transported over randomly
chosen distances r, which are power-law distributed as

P(r) ∼ r−d−σ , (1)

where d is the spatial dimension and σ > 0 is an exponent controlling the characteristic shape
of the distribution. By studying DP with Levy flights, it turns out that critical exponents vary
continuously in a certain range of σ .
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Let us briefly recall some of the main results for the GEP. The starting point is the Langevin
equation for directed percolation, i.e. epidemic spreading without immunization,

∂tφ(�x, t) = aφ(�x, t) − bφ2(�x, t) + D∇2φ(�x, t) + ξ(�x, t). (2)

Here, φ is the density of infected individuals, a is a parameter controlling the spreading rate,
−bφ2 reflects to lowest order the constraint that individuals cannot be doubly infected and
D∇2φ is a diffusion term accounting for nearest-neighbor interactions. The noise ξ describes
density fluctuations caused by the stochastic nature of the spreading process and is defined by
the density-dependent correlations

〈φ(�x, t)φ(�x ′, t ′)〉 = �φ(�x, t)δd(�x − �x ′)δ(t − t ′). (3)

As first suggested by Cardy [7], the effect of immunization can be implemented by adding a
term of the form

λφ(�x, t) exp

(
−w

∫ t

0
dt ′ φ(�x, t ′)

)
. (4)

In this term, the integral sums up the past activity at position �x between the initial condition
t = 0 and the actual time t. If this integrated activity is still small the exponential function
is essentially equal to 1, marking a non-immune individual. However, when the integrated
activity exceeds a certain threshold of the order 1/w, the exponential function ‘switches’ to
zero, representing an immunized individual. Omitting arguments �x, t , the modified Langevin
equation reads

∂tφ = aφ − bφ2 + D∇2φ + ξ + λφ exp

(
w

∫ t

0
dt ′ φ(�x, t ′)

)
. (5)

As can be seen, the exponential function is coupled to the field φ(�x, t) so that it effectively
modifies the spreading rate a. This means that non-immune sites are infected with rate a + λ,
while immune sites are infected with rate a. This allows one to control the rates for the first
and all subsequent infections of an individual separately. The additional term modifies the
critical behavior of the transition, leading to a universality class which is different from DP.
This so-called GEP class comprises all models which are defined in the spirit of this Langevin
equation.

Using the Janssen–de Dominics formalism by introducing a response field φ̃(�x, t) and
integrating out the Gaussian noise, one is led to a field-theoretic action [7, 8]

S =
∫

ddx

∫
dt

[
φ̃

(
−∂t + a + D∇2

)
φ +

�

2
φ̃2φ − b

2
φ̃φ2 +

λ

2
φ̃φ exp

(∫ t

0
dt ′ φ(�x, t ′)

)]
,

(6)

which is expected to be valid in arbitrary dimensions.
Apart from the interpretation as an epidemic process with immunization, the GEP also

plays an important role as a dynamical process that produces isotropic (undirected) percolation
clusters in d dimensions. More specifically, whenever the process terminates, it leaves behind
a certain cluster of immune sites. This cluster can be shown to be an ordinary percolation
cluster [11] for which the critical exponents are already known (in two dimensions even
exactly) and can be expressed in terms of two standard exponents β and ν ≡ ν⊥ respectively.
In the GEP, time as an additional degree of freedom induces another exponent, the so-called
dynamical exponent z. Knowing β, ν and z, the exponents for the survival probability
P(t) ∼ t−δ and the average number of particles N(t) ∼ t θ can be expressed as

δ = β

ν‖
, θ = d

z
− 2β

ν‖
− 1 for ordinary GEP, (7)

2
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Table 1. Critical exponents of the standard general epidemic process. Empty entries are not
available.

Exponent d = 2 [12] d = 3 [12] d = 4 [13] d = 5 [13] d � 6

β 5/36 0.417 0.64 0.84 1
ν⊥ 4/3 0.875 0.68 0.57 1/2
ν‖ 1.506 1.169 – – 1
δ 0.092 0.356 – – 1
θ 0.586 0.536 – – 0
z 1.129 1.336 – – 2

where ν‖ = zν⊥. The upper critical dimension of the GEP is dc = 6 and the exponents are
summarized in table 1.

In this paper, we consider the GEP generalized in such a way that the nearest-neighbor
interactions are replaced by non-local ones according to a Levy distribution (1). For large
values of σ , where the Levy flights become short ranged, one expects to recover the standard
GEP. On the other hand, for sufficiently small values of σ the interactions are so long ranged
that any spatial structure is wiped out; hence one expects mean-field behavior. In between
there is an intermediate regime described by a non-trivial field theory [14], where critical
exponents vary continuously with σ .

The paper is organized as follows. In the following section, we recall how the problem can
be formulated as a field-theoretic action that involves a fractional derivative. Then in section 3
we analyze the scaling behavior of this action, determine the range where perturbative methods
can be applied, discuss two scaling relations which are conjectured to hold to all orders of
perturbation theory and quote the one-loop results derived by Janssen et al [14]. Finally, we
verify these findings by numerical simulations in section 4.

2. Field-theoretic action

A Lévy flight in d dimensions is an isotropic random displacement �x → �x + �s according to a
probability distribution which, for large distances, decays algebraically as

P(�s) ∼ |�s|−d−σ . (8)

Here, the exponent σ > 0 is a control parameter which determines the asymptotic power-law
characteristics of long-range flights. In order to normalize this distribution, a lower cutoff of
this power law for small �s is needed, for example in the form of a minimal flight distance.

Acting on a density field φ(�x, t), a Levy flight generates the time evolution

φ̇(�x, t) ∝
∫

dds P (�s)[φ(�x + �s, t) − φ(�x, t)
]
. (9)

Introducing the non-local linear operator ∇̃σ which acts on a function f (�x) as

∇̃σ f (�x) = 1

N⊥(σ )

∫
dds|�s|−d−σ [f (�x + �s) − f (�x)], (10)

with the σ -dependent normalization constant

N⊥(σ ) = −πd/2�
(− σ

2

)
2σ�

(
d+σ

2

) , (11)
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this equation of motion can be written to the leading order as

φ̇(�x, t) = ∇̃σφ(�x, t), (12)

which has the same structure as the ordinary diffusion equation apart from the fact that the
Laplacian is replaced by ∇̃σ . In the literature, the operator ∇̃σ is known as a fractional
derivative because it has certain algebraic properties that generalize those of ordinary
derivatives. For example, for 0 < σ < 2 the action of the operator ∇̃σ on a plane wave
amounts to bringing down a prefactor of the form

∇̃σ ei�k·�x = −|�k|σ ei�k·�x. (13)

As a field-theoretic approach to the GEP with Levy flights, one may simply replace the
Laplacian in the action (6) by a fractional derivative. However, past experience in the study of
directed percolation with Levy flights [14–17] shows that the fractional derivative should be
added as a new term without discarding the Laplacian. The reason is that even if the Laplacian
was not included in the bare action, it would be generated under the renormalization group.
Therefore, the field-theoretic action describing the long-ranged GEP is given by

Sσ =
∫

ddx

∫
dt

[
φ̃

(
−∂t + a + D∇2 + D̃∇σ

)
φ +

�

2
φ̃2φ − b

2
φ̃φ2

+
λ

2
φ̃φ exp

(∫ t

0
dt ′ φ(�x, t ′)

)]
. (14)

3. Scaling analysis

3.1. Scaling dimensions

The major technical problem when investigating this action lies in the structure of the
exponential function. In order to apply ordinary field-theoretic methods, one needs to expand
the exponential function as a power series. However, such an expansion is only meaningful if
the relevance of the terms under the renormalization group decrease with an increasing order.

As usual, one introduces the dimensions

[�x] = [k]−1, [t] = [k]−z, [φ] = [k]χ , [φ̃] = [k]χ̃ (15)

with respect to a momentum scale k, where z = ν‖/ν⊥ is the dynamical exponent and χ, χ̃

are the field exponents. As usual, the fields φ and φ̃ stand for the creation and removal
of active sites respectively. Since each removed particle leaves an immune site behind, the
scaling properties of the generated cluster of immune sites are described by the exponent χ̃ .
Therefore, one can identify χ̃ with the exponent β of isotropic percolation through

χ̃ = β/ν⊥. (16)

3.2. Expansion of the exponential function

Obviously, the integrand in the last term of the action has the dimension[∫
dt ′ φ(�x, t ′)

]
= [k]χ−z. (17)

This means that the exponential function can be expanded as a power series only if χ > z

since in this case the terms of the series are decreasingly relevant. Under this condition, the
zeroth term of the series, λ

2 φ̃φ, can be absorbed by a shift a → a + λ/2 so that the non-trivial

4
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term to be retained in the action is the first-order term of the exponential λ
2 φ̃φ

∫ t

0 dt ′ φ(�x, t ′)
which has the dimension [k]χ̃+2χ−z. For z > 0 this term is more relevant than the cubic term
− b

2 φ̃φ2 in equation (6) so that the latter one can be discarded. Hence for χ > z > 0 the action
takes the form

Sσ =
∫

ddx

∫
dt

[
φ̃

(
−∂t + a + D∇2 + D̃∇σ

)
φ +

�

2
φ̃2φ +

λw

2
φ̃φ

∫ t

0
dt ′ φ(�x, t ′)

]
. (18)

For σ = 2, this expression reduces to the action of the conventional GEP.
By dimensional analysis of the field-theoretic action (18), one obtains the mean field (tree

level) exponents

βMF = 1, νMF
⊥ = 1/σ, νMF

‖ = 1, χMF = 2σ, χ̃MF = σ, (19)

which are expected to be valid above the upper critical dimension

dc = 3σ. (20)

3.3. Exact scaling relations

The exponents χ, χ̃ and z are related by two exact scaling relations [14]. These relations can
be explained as follows.

The first scaling relation is caused by a rapidity reversal symmetry of the action. As can
be verified easily, the action of the standard GEP is invariant under the replacement [7, 9]

∂

∂t

φ̃(�x, t) ↔ φ(�x,−t). (21)

Obviously, this rapidity reversal symmetry also holds in the case of long-range interactions
σ = 2. Moreover, it is an exact symmetry which holds to all orders of perturbation theory.
Comparing the scaling dimensions on both sides, this immediately implies the exact scaling
relation3

χ̃ = χ − z. (22)

As long as the field exponent χ̃ is positive (which is indeed the case here), the condition χ > z

is fulfilled, justifying the expansion of the exponential term in equation (18).
The second scaling relation can be made plausible as follows. The term with the Levy

operator D̃φ̃∇σ φ is bilinear in the fields. Therefore, it modifies the free theory, whereas
it does not change the interactions described by the cubic terms. In other words, the Levy
term modifies the free propagator of the theory, but it has no influence on the structure of
the Feynman diagrams. This means that all loop integrals have exactly the same form as in
the standard GEP, the only difference being that the free propagator in the momentum space
G−1 = a + iω +Dk2 has to be replaced by G−1 = a + iω +Dk2 + D̃|k|σ . In so far, the situation
is completely analogous to the case of directed percolation with long-range interactions.

In the case of Levy-DP, it was observed that the corrections caused by the loop integrals
can be expressed as a power series in the momentum k. As in any Taylor expansion, this series
involves only integral powers, the leading order being k2. This means that the long-ranged
Levy operator produces loop corrections that can be absorbed in the coefficient of the (short-
range) Laplacian. In other words, the Levy term is not renormalized, but instead renormalizes
the short-range diffusion coefficient D. This implies that the Levy term with scaling dimension

3 Note that this scaling relation differs from the one for directed percolation, where the well-known rapidity reversal
symmetry φ(�x, t) ↔ φ̃(�x, −t) forces χ̃ and χ to be identical.

5
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[k]χ+χ̃+σ−d−z must be invariant under rescaling; hence one obtains the scaling relation

χ + χ̃ + σ − d − z = 0. (23)

This so-called hyperscaling relation holds to all orders of perturbation theory below the upper
critical dimension d � dc. Combining it with equation (22), one obtains

2χ̃ = d − σ, (24)

or equivalently

β = ν⊥
2

(d − σ). (25)

The hyperscaling relation implies that the exponents

δ = β

ν‖
, θ = dν⊥ − 2β

ν‖
− 1 (26)

are related by

δ

θ + 1
= d − σ

2σ
. (27)

3.4. Crossover from long-ranged to ordinary GEP

The scaling relations are particularly interesting at the crossover from the regime, where the
Levy operator is relevant, to the ordinary GEP, where the short-ranged Laplacian plays the
dominant role. This crossover takes place at a particular value of σ denoted as σs. Assuming
that the crossover is smooth in the sense that the exponents do not change discontinuously, σs

can be computed by plugging the known GEP exponents into the hyperscaling relation (23)
and solving it for σ :

σs = d − 2βGEP

νGEP
⊥

. (28)

For example, in d = 2 dimensions the threshold for σ , above which the short-range GEP is
recovered, is given by

σs = 43

24
≈ 1.792 (d = 2). (29)

At a first glance, this result seems to be counterintuitive as it contradicts the naive expectation
that the fractional derivative ∇̃σ should reduce to the ordinary Laplacian ∇2 at the threshold
σ = 2. However, studies of directed percolation and the Ising model with Levy-type
interactions have shown that this naive argument does not necessarily hold in an interacting
theory. Moreover, it is surprising that in 2D the crossover takes place at a threshold σs < 2,
while in previous studies of directed percolation σs was always found to be larger than 2.

3.5. One-loop results

According to Janssen et al [14], the critical exponents computed in d = dc − ε = 3σ − ε

dimensions to one-loop order are given by

β = 1 − ε

4σ
+ O(ε2), (30)

ν⊥ = 1

σ
+

ε

4σ 2
+ O(ε2), (31)

6
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ν‖ = 1 +
ε

16σ
+ O(ε2), (32)

z = s − 3ε

16
+ O(ε2), (33)

δ = 1 − 5ε

16σ
+ O(ε2), (34)

θ = 3ε

16σ
+ O(ε2). (35)

Usually, a field-theoretic ε-expansion can be verified only approximately by numerical
simulations: since the dimension d is an integer number, it is in most cases impossible to
study small values of ε � 1. However, in the present model the upper critical dimension
dc = 3σ is controlled by the parameter σ and can be chosen in such a way that ε becomes
small. This allows one to test the one-loop results directly through Monte Carlo simulations,
as we show in the following section.

4. Numerical analysis

4.1. Strategy

For a simulation in d dimensions, let us introduce the parameter µ by

µ := σ − d/3. (36)

For µ = 0 the d-dimensional system is at the upper critical dimension, while for a small µ > 0
it is slightly below dc with ε = dc − d = 3µ. Substituting this parameter, the exponents δ and
θ are given to one-loop order by

δ = 1 − 45µ

16d
+ O(µ2), θ = 27µ

16d
+ O(µ2). (37)

Hence, plotting these exponents as functions of σ , one expects the following behavior.

(i) In the mean field regime σ < d/3, the exponents are constant and given by their mean
field values.

(ii) In the interval d/3 < σ < σs, the exponents vary continuously. The slope of the tangent
at the left edge is just one-loop correction in equation (37).

(iii) Finally, for σ > σs the Levy operator becomes irrelevant and the exponents of the standard
GEP are recovered.

4.2. Details of the simulation

The model studied in our simulations is defined on a two-dimensional square lattice of sites
that can be in the states ‘healthy’ (H), ‘contaminated’ (C) and ‘immune’ (I). The model evolves
by the following microscopic transitions. On the one hand, each contaminated site becomes
immune at a rate λ:

C
λ→ I.

On the other hand, a contaminated site may infect another site, which is randomly selected by
a Levy flight at distance r:

C
Levy flight· · · · · · H

1−λ→ C· · · · · ·C.

7
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These transitions were implemented by random-sequential updates on the two-dimensional
grid with periodic boundary conditions and lateral length L. An integer variable s(x, y) is
attached to each lattice site (x, y) and stored in a two-dimensional array. s(x, y) = 0 means
that the site is in state H, s(x, y) = 1 stands for a site in state C and s(x, y) = 2 denotes a site
in state I. In addition, we kept all infected sites in a dynamically generated list to accelerate
the numerical calculations. The dynamics of the simulation is generated by a repetition of the
following steps.

(1) Randomly choose one out of the list of infected sites.
(2) With the probability λ the site is immunized by the transition C → I , followed by a jump

to step 4.
(3) Otherwise, a second site is selected by a Levy flight according to the σ -dependent

distribution (1) (see below). If this target cell is in the ‘healthy’ state, it will be infected
by the transition from state H to C.

(4) If the number of infected sites is zero, the simulation stops, otherwise increase the system
time t by the reciprocal total number of infected sites and go back to step 1.

Hence the model is controlled by two parameters, namely the Levy exponent σ > 0 and the
critical parameter λ ∈ [0, 1].

Upon infection, the isotropic Levy flight used to locate the second site is distributed by
a power law P(r) ∼ r−2−σ where r =

√
�x2 + �y2 is the absolute value of the distance

between two sites. In two dimensions, the radial distance r and the equally distributed angle
φ can be generated by setting r := z

−1/σ

1 and φ := 2πz2, where z1,2 ∈ [0, 1] are random
numbers. Note that the radial distribution has a lower cutoff so that the minimal flight
distance is 1. The actual coordinates are then computed by rounding the cartesian coordinates
(�x,�y) = (r cos φ, r sin φ) to integers.

In order to avoid the time-consuming use of trigonometric functions, one may accelerate
simulations significantly by doing the following: first, one repeatedly generates a random
vector in a square with real-valued coordinates �xs,�ys ∈ [0, 1] until r2

s = �xs
2 + �ys

2 < 1.
This procedure generates an isotropically distributed random vector on the unit disk and with
a squared radius r2

s equally distributed between 0 and 1. Then this radial distribution has to
be corrected in such a way that the desired Levy distribution (1) is obtained. This can be done
by setting

�x := �xs

rs
· r = �xs · (

�xs
2 + �ys

2
)−1/2−1/σ

(38)
�y := �ys

rs
· r = �ys · (

�xs
2 + �ys

2
)−1/2−1/σ

.

Levy flights exceeding the system size are treated by applying periodic boundary conditions.
As discussed in [15], alternative methods where such flights are dismissed or truncated are
plagued by much stronger finite-size effects.

4.3. Numerical results

In order to estimate the critical exponents of anomalous DP we used dynamical simulations
at criticality, where a critical cluster is grown from a single active seed (just as in figure 1).
In our simulations, the initial condition was a L × L-lattice with healthy sites, in which we
placed four neighboring contaminated sites forming a seed. Averaging over many independent
realizations, we measured the survival probability P(t) and the actual number of contaminated
sites N(t). At criticality, these quantities are expected to scale as

P(t) ∝ t−δ, N(t) ∝ t θ ,

8
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=2.0 =1.5 =1.0σ σ σ σ=0.2 (MF)GEP

Figure 1. A typical snapshot of clusters of immune sites for different values of σ .

0 1 2 3 4 5 6 7
σ

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ
c

σ λc σ λc σ λc

0.10 0.4994 1.0 0.4498 2.2 0.3323
0.20 0.4984 1.1 0.4397 2.3 0.3257
0.25 0.4974 1.2 0.4290 2.4 0.3193
0.30 0.4963 1.3 0.4181 2.5 0.3135
0.40 0.4933 1.4 0.4071 2.6 0.3082
0.50 0.4892 1.5 0.3962 2.8 0.2988
0.60 0.4836 1.6 0.3856 3.0 0.29085
0.67 0.4790 1.7 0.3753 3.5 0.2750
0.70 0.4768 1.8 0.3656 4.0 0.26355
0.75 0.4729 1.9 0.3565 5.0 0.2485
0.80 0.4687 2.0 0.3477 6.0 0.2394
0.90 0.4598 2.1 0.3397 7.0 0.2337

Figure 2. Critical percolation threshold λc of the long-range general epidemic process as a function
of σ (see the text).

where δ = β/ν‖ and θ = (dν⊥ − 2β)/ν‖ − 1. Since deviations from criticality lead to a
curvature of P(t) and N(t) in double logarithmic plots, we held σ ∈ [0.2, 7.0] constant for
different values of λ, searching for a straight line in order to get a precise estimate of the
percolation threshold λ for different values of σ (see figure 2). For small σ , finite size effects
even occur at small simulation times, which can be minimized by increasing the lateral system
size L. For σ = 0.2 and L = 14000, as an example, finite size effects occurred for T > 2000.
For bigger σ , we simulated up to T = 10000 and averaged over 5000 runs.

As can be seen from figure 3, one observes three different regimes as expected (see the
discussion after equation (37)):

(1) σ < 2/3: mean-field behavior (interactions range is effectively infinite);
(2) 2/3 < σ < σs : intermediate phase with continuously varying exponents whose values,

to one-loop approximation, are given by (37);
(3) σ > σs : ordinary short-range GEP with exponents given in table 1, where the Levy

operator becomes irrelevant.

Our numerical results are shown in figure 3, where the expected values of the mean-field
exponents and the short-range GEP exponents are marked by horizontal lines. The field-
theoretic one-loop predictions according to (37) are shown as tilted straight lines, which in
principle should be tangent to the numerical curve near the crossover. The coincidence is far
from being perfect, probably because of strong finite-size effects when σ is small. Nevertheless

9
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Figure 3. Exponents δ and θ for epidemic spreading with immunization as a function of the Levy
exponent σ in the mean field (MF), long-range (LGEP) and short-range regime (GEP).

the estimates seem to follow the predicted behavior and, as far as we can judge, confirm the
field-theoretic results.

5. Conclusions

In this paper, we have studied the general epidemic process (GEP) with long-range interactions
and immunization. In our model, infections are transported by Lévy flights over large distances
according to a power-law distribution P(r) ∼ f −d−σ depending on a parameter σ > 0. After
being infected once, individuals become perfectly immune.

The main result of our work is that we fully confirm, through numerical analysis, the field-
theoretic predictions of Janssen et al, namely that one should observe three different regimes
depending on the value of σ . For σ < 2/3, the system is so strongly mixed that the mean-field
behavior is expected at the transition. On the other hand, for σ above a characteristic threshold
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σs ≈ 1.792 the usual short-range Laplacian ∇2 dominates over the Levy operator ∇σ which,
in field-theoretic parlance, becomes irrelevant. In this regime, the system becomes effectively
short ranged and one recovers GEP exponents. In between, one has an intermediate regime
with continuously varying scaling exponents. To one-loop order these exponents are given
by (37), in fair agreement with the numerical simulations for small values of σ > 2/3.

The σ -dependent simulation is interesting in that it allows us to move continuously from
the mean-field regime over the long-range phase to the short-range regime without changing
the space dimension d. At the crossover from the mean field to the LGEP phase, it is possible
to verify the field theoretic one-loop prediction quantitatively. The second crossover from the
LGEP phase to the short-range GEP regime is also interesting in so far as it takes place, for
d = 2, at σs ≈ 1.792 and not at σ = 2, as one would naively expect as a threshold where ∇σ

replaces the ordinary Laplacian ∇2.
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